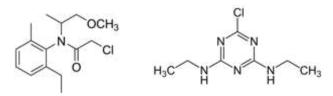


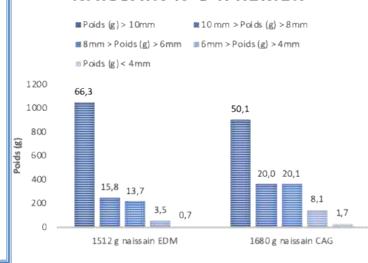
ADAQUA 2

PTION SUR CHARBON ACTIF POUR UNE AMÉLIORATION DE LA QUALITÉ DE L'EAU AQUACULTURE: APPLICATION AUX ÉCLOSERIES CONCHYLICOLES

CAS DU GLYPHOSATE ET SES MÉTABOLITES

DÉPARTEMENT RESSOURCES BIOLOGIQUES ET ENVIRONNEMENT NITÉ SANTÉ GÉNÉTIQUE ET MICROBIOLOGIE DES MOLLUSQUES MARINS



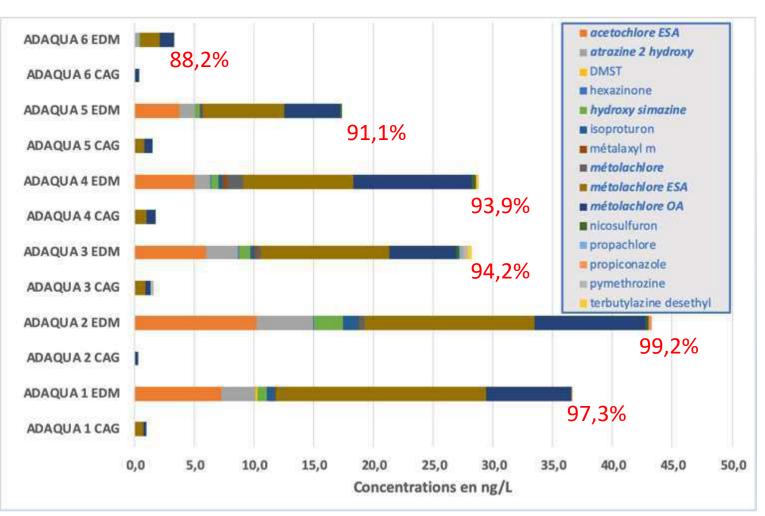

Contexte

Projet ADAQUA 1: AO SMIDAP 2014

- Performances d'adsorption satisfaisantes pour une application en eau de mer pour métolachlore et simazine : <u>processus long!</u>
- 2. Peu ou pas d'impact sur les paramètres physicochimiques de la qualité de l'eau
- Fécondations souvent plus difficiles dans l'eau décontaminée en conditions d'écloserie commerciale et en conditions expérimentales
- 4. Croissance plus lente en élevage

- → Changement de charbon présentant un taux de cendres proche de zéro : fiabilisation de l'étape de fécondation, fiabilisation du procédé (conditions opératoires)
- → Analyses des capteurs passifs
- → Besoin de développer une méthode d'analyses spécifique et de trouver des adsorbants adaptés à la rétention du glyphosate et de ses produits de dégradation

2



Contexte

Focus sur analyses capteurs passifs projet ADAQUA 1

- → Molécules cibles majoritaires
- Exposition
 continue des
 larves à un
 cocktail de
 μpolluants, sans
 impact démontré
 à ce stade, et
 après ?
- → Performances du procédé > 90% mais pas de rétention totale (cinétique lente)

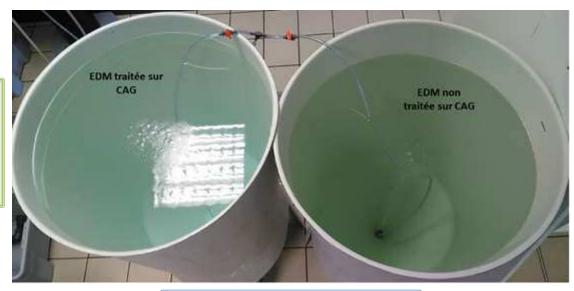
Les objectifs du projet ADAQUA 2

1. Consolider les acquis en termes de gestion du procédé d'adsorption sur charbon actif en grains

- Éprouver l'efficacité du second charbon actif choisi (CECA 1240L) : pas de particule fine relarguée
- Limiter la température de l'eau de mer en entrée de colonne à 20°C : limiter les développements bactériens au sein du lit de charbon actif
- Retirer une étape de désinfection UV, après colonne

2. Etudier les conditions optimales d'adsorption du glyphosate et de ses sous-produits de dégradation

- Identifier un matériau adsorbant adapté à ce type de molécule
- Etudier les performances d'adsorption du glyphosate sur le charbon actif CECA 1240L et sur les autres adsorbants identifiés
- Mettre en œuvre un nouvel adsorbant ou nouveau mélange d'adsorbants en conditions d'élevage expérimental



1. Elevages larvaires d'huîtres creuses *Crassostrea*Conditions opératoires *gigas*

Deux qualités d'eau

Eau de mer décontaminée

(CAG)

Eau de mer « témoin »

(EDM)

TRAITEMENTS DE L'EAU

Décantation

Filtration 5 µm

Désinfection UV

Adsorption sur CAG

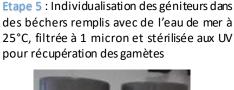
Décantation

Filtration 5 µm

Désinfection UV

1. Elevages larvaires d'huîtres creuses *Crassostrea*Conditions opératoires *gigas*

Fécondations en conditions contrôlées

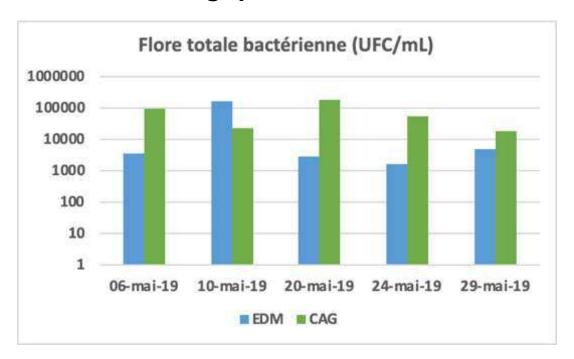

Etape 1 : Mise à sec de géniteurs la veille de la ponte

Etape 2: géniteurs dans eau de mer à 14°C pendant 30 minutes

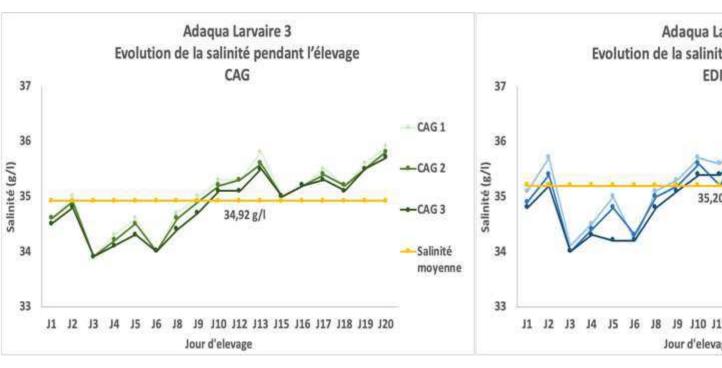
Etape 3 : choc thermique dans eau de mer chaufée à 24°C

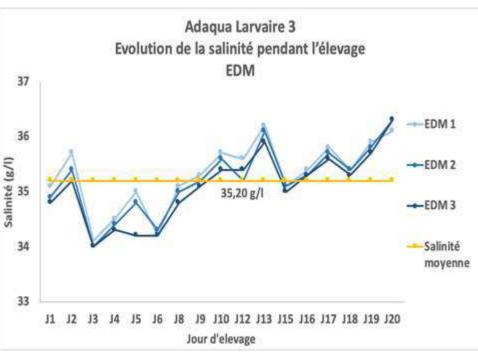
Etape 4: Attente de la ponte durant 15 à 20 minutes, recommencer les étapes 2 et 3 si nécessaire

Fécondations par mise en contact des gamètes mâles et femelle et réalisation de 3 élevages (chacun 30 L) pour chaque condition d'eau avec l'objectif d'obtenir de 1 à 2 millions de larves par bac

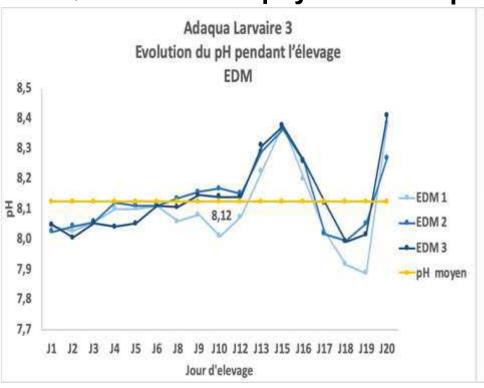


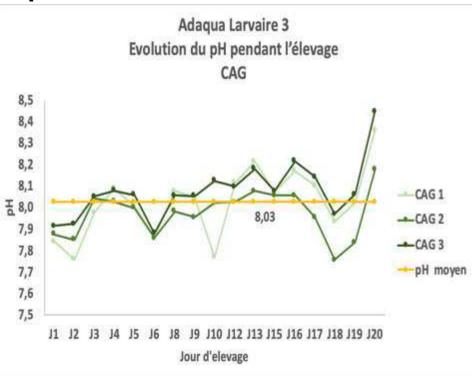
Qualité de l'eau microbiologique


- Pas de bactéries du genre Vibrio dans tous les échantillons d'élevage analysés
- Des concentrations bactériennes jusqu'à 2 log supérieures en eau
 CAG

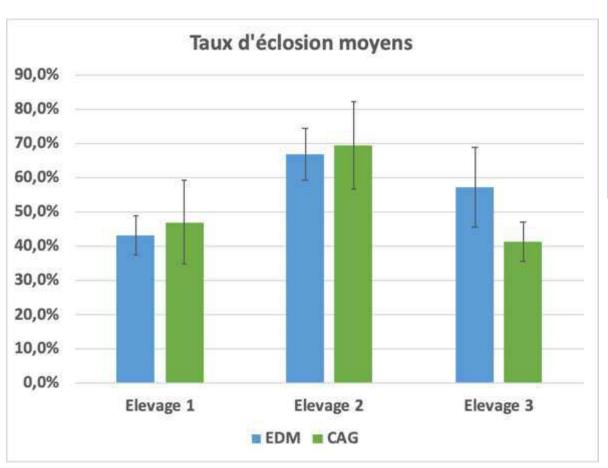


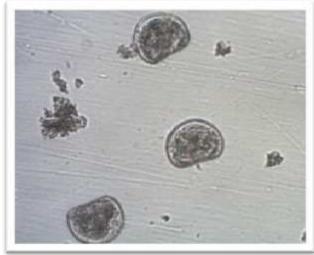
Qualité de l'eau physico-chimique : salinité


- Perte de 0,1 à 0,2 points de salinité après passage sur la colonne de CAG
- Evolution similaire dans les deux qualités d'eau



Qualité de l'eau physico-chimique : pH

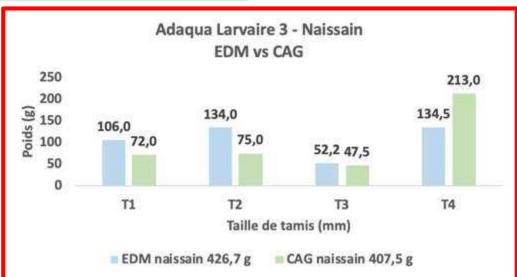

- Perte de 0,1 point de pH maximum après passage sur la colonne de CAG
- Evolution qui peut différer, effet de « lissage » du procédé



Fécondations: taux d'éclosion

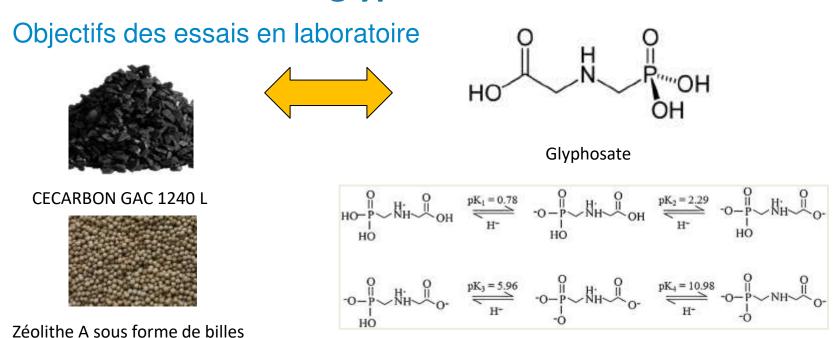
- Variabilité au sein d'un même triplicat (effet bac)
- Ecarts non significatifs dans les deux qualités d'eau lors des 2 premiers élevages

Résultats d'élevages : exemple de l'élevage 3

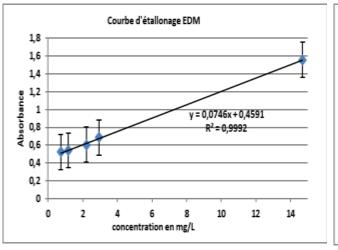

TAMISAGE A J23	EDM	CAG
Effectifs larves > 100 μm	279 583	706 667
Effectifs larves > 125 μm	473 333	535 000
Effectifs larves > 150 μm	220 833	228 333
Effectifs larves > 180 μm	210 000	155 000
Effectifs larves > 220 μm	58 334	40 000

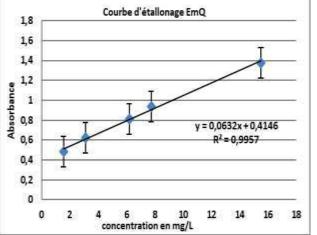
- Meilleure survie en eau CAG (37% par rapport à l'effectif initial contre 23% en EDM) → meilleure protection ?
- Croissance plus lente en eau CAG → rétention de substances dissoutes utiles aux larves?

Plus de larves en fixation en EDM mais une distribution de taille plus favorable du naissain en eau CAG 2 mois après fécondation



- → Développer une méthode d'analyse « simple » pour le suivi du glyphosate lors des essais en laboratoire
- → Déterminer les capacités maximales d'adsorption sur plusieurs adsorbants




Développer une méthode d'analyse simple

Méthode de dérivation au FMOC, groupement chromophore pour analyse au spectrophotomètre (méthode dérivée de la référence AQUAREF)

Réaction → **Extraction** → **Mesure spectrophotométrique**

Courbes d'étalonnage en eau de mer et eau déminéralisée

Détermination des capacités maximales d'adsorption

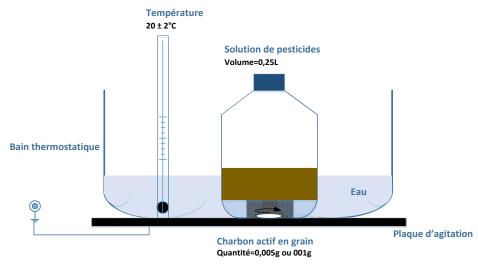


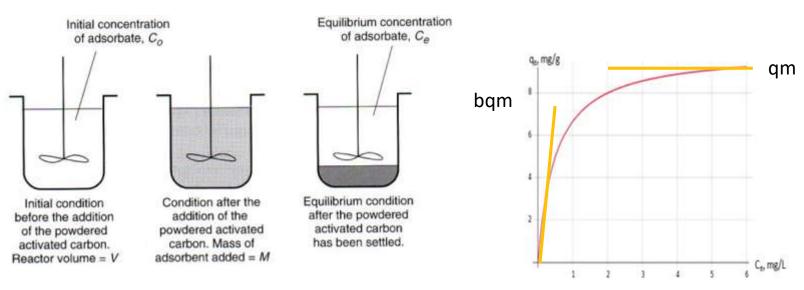
Schéma et photo du disposition expérimental en réacteur fermé

Zéolithes testées :

- Zéolithes A (billes) (Somez)
- Chabasite
- Chabasite-Fe
- Heulandite/clinoptilolite
- Heulandite/clinoptilolite (Cas Filtration Ltd)

Conditions expérimentales de départ

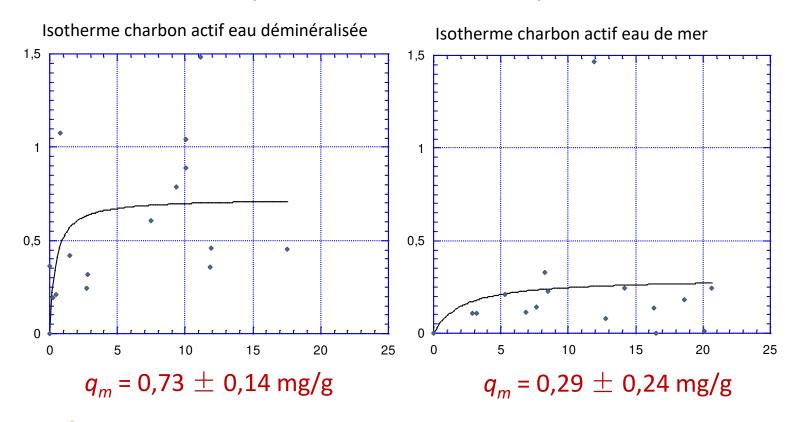
Conditions initiales	Données	
Température	25 ± 2 ° C	
Vitesse d'agitation	500 rpm	
Volume total de la solution	250 mL	
Concentration initiale	Varie entre 14 et 18 mg/L	
Masse adsorbant	Varie entre 0,5 et 35 g	



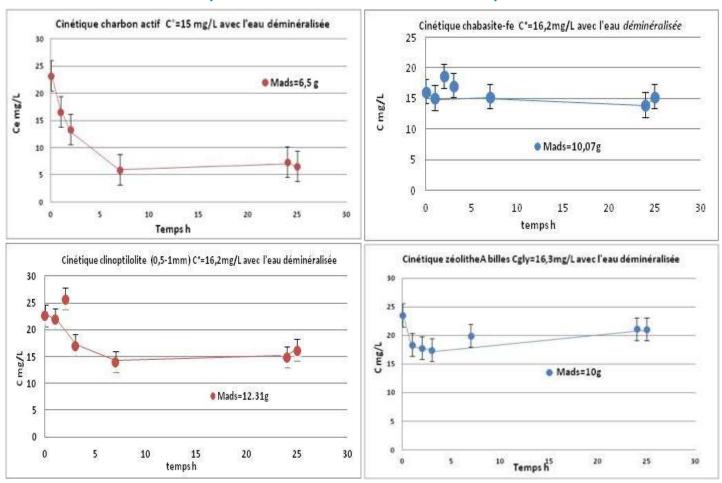
Détermination des capacités maximales d'adsorption

Modèle d'adsorption de Langmuir

$$q_e = \frac{bq_m C_e}{1 + bC_e}$$


> Capacité maximale d'adsorption qm?

Détermination des capacités maximales d'adsorption avec le CAG


 \rightarrow Capacités maximales d'adsorption beaucoup plus faibles pour le glyphosate que pour le métolachlore (q_m = 338 \pm 38 mg/g) et la simazine (q_m = 187 \pm 20 mg/g)

Détermination des capacités maximales d'adsorption

> Premiers essais : capacités d'adsorption encore plus faibles avec les zéolithes

Conclusions

- 1. Application du procédé en élevage larvaire d'huîtres creuses Crassostrea gigas
- Pas d'impact négatif du procédé sur les paramètres physico-chimiques et microbiologiques de l'eau
- Meilleure protection contre des éléments nocifs versus privation d'éléments participant au développement des larves
- Obtention de naissain en eau CAG, performances à confirmer dans le temps

- 2. Etude de l'adsorption du glyphosate
- Capacité d'adsorption très faible du glyphosate sur le charbon actif utilisé pour les élevages larvaires
- Pas d'adsorbant disponible capable de retenir ce type de composé à ce jour

- → Attente des résultats d'analyses de glyphosate et POCIS programmés lors des 3 élevages larvaires expérimentaux
- → Améliorer la compréhension des mécanismes d'adsorption, notamment les compétitions d'adsorption avec les matières organiques et les sels dissous

Merci de votre attention

